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ABSTRACT tive evaluation of a simulation for all cases is uirely possi-
ble, sensitivity analysis is especially important for

Large-scale simulations often involve huge numbers of promoting confidence in the "robustness" of a model (i.e.,
parameters, making it prohibitive to run more than a tiny showing that its results are independent of minor changes
fraction of all potentially relevant cases. Sensitivity analy- to its parameters) and for indicating which parameter
sis attempts to show how sensitive the results of a simula- values are the most important ones to validato in order to
tion are to changes in its parameters; this is an important make the model believable [3], [4].
tool for promoting confidence in a simulation and making
its results credible. However, the computational cost of The simplest approach to sensitivity analysis, which we
traditional approaches to sensitivity analysis prevents its refer to as "naive perturbation", requires running a simula-
use in many cases. We show that this cost is logically tion many times, while perturbing individual parameters
unnecessary and can be largely avoided by propagating to see how the results differ. The computational cost of this
and combining sensitivities during a computation, rather process is prohibitive for all but the most trivial simula-
than recomputing them. We describe this "propagative" tions, which is why sensitivity analysis is rarely performed
approach to sensitivity analysis and present the algorithm in simulation. Furthermore, faster computers do not solve
we have implemented to explore its potential. this problem, since their increased capacity is invariably

used to build bigger and more elaborate models rather than

1. Overview to perform sensitivity analysis on existing models. An
alternative approach to sensitivity analysis, called Pertur-

A simulation can be viewed as a single top-level function, bation Analysis [61, [7], applies only to certain kinds of

which may have thousands or even tens of thousands of simulation and requires substantial mathematical knowl-
parameters. It is generally prohibitive to run such a simu- edge about the process being simulated. The inability to
lation (i.e., evaluate this function, for more than a tiny perform sensitivity analysis cost-effectively for arbitrary

laton i~e, ealute hisfuntio,~ or oretha a iny simulations therefore remains an ongoing and critical
fraction of all possible combinations of parameter values. impedimnt toeee e an oe odel as crdibl

Simulations are therefore typically run for relatively few impediment to the acceptance of these models as credible

cases, representing the most important, likely, or promis- planning and decision aids. This paper describes research

ing of these parameter values. Sensitivity analysis on a computationally feasible way of performing sensitiv-

attempt, to show how sensitive the results of a simulation ity analysis in a simulation context [51.

are to varying the values of its parameters. Since exhaus-

2. Background
*This research was sponsored by the Defense Advanced
Research Projects Agency (DARPA) under the auspices of Consider the abstraction of a simulation shown in
RAND's National Defense Research Institute, a Federally Figure 1, where a top level function, Sire, invokes many
Funded Research and Development Center sponsored by the levels of nested subfunctions! each of which may be
Office of the Secretary of Defense. under contract No. called many times. In most cases of practical interest, the
MDA903-85-C-0030. Views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official opinion of DARPA, tLa, his discussion, the term "subfunction" is used to mean a
the U.S. goverrunent, or any person or agency connected function that is called by another function, whether or not it
with them. is defined within the lexical scope of its caller.

Reprinted from Al, Simulation and Planning in High Autonomy Systems, Bernard Zeigler, Jerzy Rozenblit (eds.), March 26-27, 1990,
pp. 10-16, C 1990 IEEE Computer Society Press. Reprinted by permission.
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reaped recursively. Furthermore, in some cases the sensi-

tivity of a given subfunction may be known in detail from
SiM(P 1. ...PN) analytic knowledge; for example, the sine function shown

in Figure 1 should not require perturbation at all, since its

derivative is known.

f(f .... f) g(g 1 . .. gn) In general then, naive perturbation wastes considerable
effort in computing the sensitivities of the subfunctions of
Sim. This observation forms the basis for the approach to

q(q....qm) r(r... rsensitivity analysis proposed below.

3. A new approach to sensitivity analysis

sine (at) We have designed a new propagative approach to sensi-

tivity analysis that propagates and combines the sensitivi-

ties of functions during a computation. This is based on the

Figure 1: Simulation as a high-level function observation that it is possible to compute a function's sen-

sitivity as part of the process of computing its value [2]. The

approach is motivated by the chain rule of the differential

function Sim will have a large number of parameters calculus, which defines the partial derivative of a compos-
pk (k = 1,..,N) relative to the number of parameters of most ite function as a combination of the partial derivatives of

of its subfunctions. The naive pertu-bation approach to its subfunctions (assuming these subfunctions are differen-
sensitivity analysis attempts to approximate a local partial tiable with respect to the parameters of interest). The chain
derivative for each parameter pt by perturbing pi in the rule justifies the "propagation" of sensitivity information in

neighborhood of its value at some point of interest, the sense that the sensitivity of a functionf (i.e., its partial
P ={Pk). The usual way to approximate the partial derivatives) in a given neighborhood can be used to
derivative would be to compute the Cauchy ratio: approximate the value off in that neighborhood. A geomet-

Sim (P1 ,. Pk + A, PN) -Sim (P11...PN) ric interpretation of this process for a function g(x) of one

A .- which for parameter, is that the partial derivative g'ofg in the neigh-

convenience we wili write (Sim(P+Ak) - Sim(P))/t~k. This borhood of a point x0 represents the slope of g at x0 , which

approach will execute Sim once to compute Sim(P) plus can be used to approximate the value of g(xo+A) by meansapprachwil excuteSir one t comuteSimP) lus of the linear approximation g(zr~+A~) = g(xo) +g'(x0)A.

one or more times for each parameter Pk, each time

executing each subfunction as many times as it is called. Our propagative approach computes a representation of
Each subfunctionf will therefore be executed on the order the sensitivity of each subfunction the first time it is exe-
of N times, where N is the number of parameters of Sim th
(the exact number of timesf will be executed is a function cuted and propagates that sensitivity information (in the

of the number of times a single parameter must be above sense) rather than recomputing it each time it is

perturbed in order to approximate a partial derivative and needed. In cases where a subfunction's partial derivatives

the number of timesfis invoked by Sim). are known analytically, they can be declared as part of its
definition, providing a direct representation of its sensitiv-

Now consider some subfunction g(g . g,) of Sim that ity. In general, however, a numerical approximation to a

has many fewer parameters than N (i.e., n<<N). Assuming subfunction's partial derivatives must be computed, for

that g is reasonably well-behaved, finding its sensitivity to example by making it perturb itself once for each of its

variations in its parameters should not require anywhere own parameters. This approach is applied recursively to

near N evaluations: g is simply not complicated enough to the subfunctions of each subfunction; any subfunction that

warrant this much expenditure of effort! In fact, it should

be possible to fully characterize the sensitivity of g by *Note that for simplicity, this paper focuses on sensitivity

evaluating it on the order of n (rather than N) times, result- analysis in which one parameter at a time is varied, though

ing in a tremendous performance improvement. Similarly, the propagative approach applies equally well (and has even

if g calls q(q,,...q.), where q has many fewer parameters greater potential payoff) when combinations of parameters

than g (i.e., m<<n<<N), then this improvement can be are varied together (i.e., when higher-order partial
derivatives are required).
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as more parameters than its caller will not benefit from continuous (though this could be done automatically). The

this propagative approach and so is simply handled as in environment then automatically modifies each candidate
naive perturbation. function to return a representation of its sensitivity as well

as its normal return value.

Conceptually, the approach proceeds as follows. In order

to compute the sensitivity of Sim, each of its parameters Pk
is perturbed in turn (as in naive perturbation) to compute 4. Locality and "occurrences" of functions

the Cauchy ratios (Sim(P+Ak) - Sim(P))/Ak, for all k. In the
process of evaluating Sim during these perturbations, the The description of the propagative approach presented so
first time a particular subfunction f is called, make f far ignores one major problem by implying that a given

compute its own sensitivity (by repeating this process subfunctionf has the same sensitivity each time it is called.

recursively) and return this information to Sim along with This may be true for functions whose actual partial deriv-

its normal return value. For all subsequent calls tof during atives are known analytically, but in general the sensitivity

the perturbation of Sim's parameters, Sim uses the sensitiv- information returned by a function cannot be assumed to

ity information returned by f to approximate the value off represent more than a local, numerical approximation to

instead of re-executing it. This process iS described in its partial derivatives in the neighborhood of its invoca-

further detail in Section 5. tion. To properly reflect this locality assumption, we intro-
duce a novel concept, which we call an "occurrence" of a

Our initial attempt to analyze the expected payoff of this function. Consider the procedural pseudo-code shown in

approach resulted in a program that performed symbolic Figure 2, in which Function Fl appears twice in function

analyses of computations to ^valuate the advantages of the H and F2 appears five times. During a single invocation of

new approach. We soon realized, however, that this payoff H, F1 will be evaluated twice, once with argument Z and

analysis was even more computationally intensive than the once with argument r. We say that there are two "occur-

sensitivity analysis it was attempting to analyze! It became rences" of Fl in H (labelled Fl :1 and Fl:2 in Figure 2). In

clear that it would be more efficient to analyze the payoff the absence of further information about Z, r, and Fl, these

by actually implementing a propagative environment and two occurrences must be assumed to have entirely inde-

using it to perform sensitivity analysis while collecting pendent sensitivities, since Z and r may represent quite dif-

performance statistics. We therefore next implemented a ferent neighborhoods of the domain of Fl. The sensitivity

novel, stand-alone computational environment (in LISP) of each occurrence of F1 must therefore be computed sep-

to support the propagation and combination of sensitivi- arately, as if each occurrence were a distinct function; the

ties. This environment has allowed us to try our approach sensitivity information for each occurrence of Fl (as well

on a number of computations and to analyze its payoff. as for every other occurrence of every subfunction called
by H) is stored in an "approximation table" in H.

Although the purely-applicative nature of LISP lends itself
reasonably well to the propagative approach (since every
function consists simply of subfunction calls), the FUNCTION H(AB,...,X,Y.Z)

approach would work equally well in a procedural lan- BEGIN
guage, where subfunction calls are embedded in a sea of I := F (); g OTIC

in-line computation. In addition, not all functions in a c() I 2Y

given computation are of interest for sensitivity analysis:
for example, it may not make sense to analyze the sensi- n := F2(X. F2(YZ)); F3_

tivity of built-in functions (such as the LISP conditional F Fl(r);
function "cond"). Our computational environment there- FOR 1 O n DO r := r + F3();
fore allows the user to designate which functions are "can-

didates" to be analyzed; these functions are automatically IF Condition THEN q := F2(AB); [
instrumented by the environment to keep track of how s := F2(Y+A, Z+A);
often they are called. The user further identifies whether
candidate functions have return values that are discrete or

END

"'Though it is an important issue, we defer to a later paper the Figure 2: Occurrences of functions odes

question of how to choose an appropriate value of A for each
perturbation.
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If H now invokes itself again with one of its parameters of H, as described above). Furthermore, this invocation of
perturbed, each occurrence of F1 will remain in the same H must itself persist throughout the temporal scope of all
neighborhood of its domain (assuming that the value of r occurences of its subfunctions; that is, the initial evalua-
is a continuous function of the parameters of H), so that the tion of H and its subsequent perturbations must all be part
sensitivities previously computed for Fl: I and Fl:2 of a single invocation of H. This motivates the algorithm
(which were saved by H in its approximation table) should described in the next Section.
serve as valid approximations for these occurrences of F1
in the new, perturbed invocation of H.

5. An algorithm for the propagative approach
Note that this concept of an occurrence of a function lies

some her bewee aninvcatin ad alexcalappar- Whenever a candidate function is called normally during asomewhere between an invocation and a lexical appear-

ance. It is less dynamic than an invocation, in that there is computation (which we refer to as a "primary" call), our

a strong association between the occurrence FI:I during environment first causes the function to compute its

the first invocation of H and the corresponding occurrence normal return value and then causes it to place recursive
Fl: I during the second, perturbed invocation of H; this "secondary" calls to itself, perturbing each of its argu-

association allows the sensitivity computed for FI: 1 ments in turn. By so doing, the function computes its sen-
during the first invocation of H to be used to approximate sitivity and returns this information to its caller (along

the value of F 1:1 during the second, perturbed invocation with its normal return value). During these secondary calls
of H. In addition, an occurrence is relative to the calling to itself, the function approximates the return values of its
function (H), whereas an invocation of a function is gener- candidate subfunctions, rather than recomputing them for
ally independent of its caller. (Note, for example, that each secondary call. The default approximation technique
calling a recursive function represents only a single occur- is to apply the sensitivity of each called subfunction as a
rence in the caller.) linear approximation of its value (where the sensitivity of

each subfunction is computed recursively by this same
An occurrence is more dynamic than a lexical appearance process and returned to its caller). This process hinges on
of a function, as illustrated by other functions in Figure 2. the notions of primary and secondary calls, which we illus-
For example, F2 appears five times in H, but it may only trate with a simple example, shown in Figure 3.
occur 4 times during a given invocation of H, depending
on the conditional test. Similarly, the number of occur- Consider a top-level function H that calls a candidate func-
rences of F3 depends on the dynamic upper limit of the tion F, which in turn calls another candidate subfunction
FOR loop. Note that a given flow of control through H G. For simplicity, suppose that there is only a single occur-
results in a particular set of occurrences of its subfunc- rence of G in F, that F calls no other candidate subfunc-
tions. To summarize, an occurrence of a function F in H tions besides G, and that G calls no candidate subfunctions
corresponds to an invocation of F in a particular neighbor- at all. Further, suppose both F and G are continuous-
hood of its domain, during the execution of a particular valued, differentiable functions. Since F is a candidate
flow of control through H. To our knowledge, this concept function, the propagative environment automatically
is not supported by any programming language, including interprets H's call to F as a primary call (shown as

LISP and Prolog. "p-call"). Upon receiving this primary call, F initializes its
approximation table and proceeds to compute its normal

The occurrence defines the temporal scope of the sensitiv- return value, calling G in the process. Since G is also a
ity information for a function. That is, the sensitivity infor- candidate function, the environment interprets this as a
mation for a given occurrence of a function F in H must primary call as well. Upon receiving this primary call, G
persist from the time that H first invokes F to compute F's proceeds to compute its normal return value (since G calls
sensitivity through the subsequent invocations of F by H no candidate subfunctions, it does not need to create an
that use this sensitivity information to approximate F. This approximation table). Having computed its value-and
information cannot be stored in any single invocation of F before returning from its primary call--G must compute
(since it must persist across several such invocations), nor its sensitivity, to be returned to F along with G's value.

can it be stored as "own" information of F (since it must
be associated with a particular flow of control through a To compute its sensitivity, G perturbs each of its own

particular calling function, H). The sensitivity information arguments in turn, placing a recursive secondary call

for a given occurrence of F must therefore be stored in the (shown as "s-call") to itself for each perturbation. For

corresponding invocation of H (in the approximation table example, if G has only a single formal argument, whose
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alue (as supplied in F's primary call to G) is X, then G ion table entry for that subfunction. It is the ability to
vil place a secondary call to itself with an argument of approximate these return values (rather than recomputing
V+A), where A provides the perturbation. This recursive them) that allows the propagative approach to outperform
econdary call to G returns the value G(X+A) to the naive perturbation. When F has completed perturbing its
,rimary invocation of G. Assuming, for simplicity of parameters via recursive secondary calls, it will have
xposition, that a single perturbation is enough to produce derived its own sensitivity to its parameters: This informa-

linear approximation to its "partial" derivative, G tion is returned by F to its caller to serve as F's entry in its
omputes the Cauchy ratio (G(X+A) - G(X))/A as its caller's approximation table.
ensitivity information (shown as "s(G)"), and returns this
) F along with G's normal return value (shown as A secondary call by a function F to a candidate subfunc-
g(X)"). The value of the Cauchy ratio represents the tion G essentially replaces the evaluation of G with an
ensitivity of G to its argument (in the neighborhood of the approximation, using the entry for G in F's approximation
oint X); this is used subsequently by F as a linear table (which was returned to F by G, when F placed its
pproximation to the value of G. If G had several primary call to G).
rguments, it would perturb each one, generating
econdary calls to itself to compute a Cauchy ratio for each One final point is that the flow of control through H must
tartial derivative, and would return the c-illection of the not change when it perturbs its parameters. This would

esulting coefficients as its sensitivity information, invalidate the locality assumption (that secondary calls
occur in the same neighborhood as their corresponding

khen the primary call to G returns to F, F separates the primary call), which justifies the use of approximations for
eturn value g(X) from the sensitivity information s(G), subfunctions during secondary calls. In order to guard
;'hich it stores as its approximation table entry for this against this, an "occurrence-counter" counts subfunction

Kccurrence of G. F continues executing its own primary occurrences during the primary call of H and records the

all (from H), using the value g(X) as needed to compute value of the counter in the approximation table entry for
ts own return value. Having computed its value (and each occurrence. During a secondary call of H, if the
)efore returning from its primary call), F computes its sen- stored value for a particular subfunction occurrence does
;itivity (to be returned to H along with F's value, as the not match the dynamic value of the occurrence-counter or
'esult of H's primary call to F). To compute its sensitivity, the parameter values for the call are not within the same
F perturbs each of its own arguments in turn, placing a neighborhood, then the control flow for this secondary call
recursive secondary call to itself for each perturbation. has deviated from that of the corresponding primary call;
The results of these recursive secondary calls are used to in this case the environment reports that the locality
:ompute the Cauchy ratios for F's own partials, as was assumption has been violated.
Jone for G. However, during these secondary calls, when-
,ver F would normally call G, it now "places secondary
,alls to G", by which we mean that it uses its approxima- 6. Results
ion table entry for G to approximate the value of G rather
ban actually calling G. The environment ensures that the Our initial results indicate that this propagative approach
ipproximation table that F constructed during is primary has tremendous potential, reducing a combinatorial:all is available for use by these secondary, recursive invo- process to a linear one. In addition, we note that the:ations of F. approach has implications beyond sensitivity analysis: itsuggests a novel computational paradigm in which fuic-

[o summarize, a primary call to a candidate function F tions replace themselves by approximations when they are

:alculates its normal return value, in the course of which it first called, and these approximations are used for the

)laces primary calls to its candidate subfunctions, each of remainder of a computation, e.g., to improve performance.

vhich returns its sensitivity, as well as its normal return Sensitivity analysis is simply one instance of this

,alue. The calling function F stores this sensitivity infor- approach, using linear approximations based on partial

nation in an approximation table for later use. The derivatives: however, the approach---and the computa-

pimary call then initiates a series of recursive secondary tional environment we have implemented-allow arbi-

alls by F to itself, to compute its sensitivity by perturbing trary approximations to be used.

ts parameters. During these secondary calls, the value of
ach candidate subfunction is approximated using the sen- Ultimately, we would like our environment to suppT
itivity information previously stored in F's approxima- standard, procedural languages such as C or Ada This
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requires nodifying a compiler or building a preprocessor
to automatically transform user-supplied functions into the
form required by our propagative algorithm, with a
minimum of declarative overhead for the user. in addition,
further research is needed before this approach can be inte-
grated into a realistic simulation environment. For
example, although Boolean derivatives and a Boolean
version of the chain rule can be defined [11, the general
case of symbolic-valued functions requires further
thought. Our computational environment allows functions
of this sort, but only applies the propagative approach to
those functions that are differentiable in the usual sense,
performing naive perturbation for all others. However,
even without such extensions, we believe this new
approach holds great promise for the feasibility of sensi-
tivity analysis in simulation.
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